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Abstract

We prove that closed infinitesimally holomorphic curves in a hyperkéhler four-manifold are
actually holomorphic with respect to one of the parallel complex structures on the ambient space
compatible with the metric.
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1. Statementsof theresults
In our previous pap€#], we posed the following problem.

Problem. Let 02'*™ be a(2n+m)-dimensional Riemannian spin manifold with a nonzero
parallel spinor field. Let/?* be a 2-dimensional closed Riemannian spin manifold iso-
metrically immersed ip?*+". Then classify all submanifoldeg?” satisfying the condition
that there exists a nonzero parallel spinor figlé " (X Q) such that

VEMEEN (yr|y) = 0. (+)
Herey |, denotes the restriction af to the submanifold/2".
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A four-dimensional Riemannian spin manifaftf with a nonzero parallel spinor field is
nothing but a hyperkahler four-manifold.gf* is simply connected, then a Ricci-flat Kéhler
structure orp* coincides with a hyperkahler structure. K3 surfaces equipped with Ricci-flat
Kéahler metrics and four-dimensional hyperkahler ALE spaces are typical examples of such
0*.

For the above problem, in the pag8t, we gave the following answer in the case where
n=1andm = 2.

Theorem 1.1 ([3, Theorem 4.5] Let 0 be a hyperkéhler four-manifold. Let'? be a
two-dimensional closed Riemannian spin manifold isometrically immers@d.ifihen the
following conditions are equivalent:

(i) M?is a holomorphic curve with respect to one of the complex structureg‘orom-
patible with the metric
(i) M? satisfies the conditioti).

Onthe other hand, we can consider the conditioms a purely local condition without the
assumption tha¥?" is closed(i.e. compact and without boundary). In this paper, we charac-
terize the conditiorix) by the second fundamental form in the case whesel andm = 2.

Proposition 1.2. Let 0% be a four-dimensional Riemannian spin manifold with a nonzero
parallel spinor field. Let? be a two-dimensional Riemannian spin manifold isometrically
immersed inQ*. ThenM? satisfies the conditiot) if and only if the components of the
second fundamental form 812 in Q* satisfy that

3 _ 4 _ 3 4 _ 13 __ 4
hll - h12 - _11227 h22 - h12 - _hll'

The above equations are closely related to the notion of infinitesimally holomorphic
immersions. We recall its definition (db, Section 3].

Definition. An immersionF : M2 — M* of an oriented surface into an oriented Rie-
mannian four-manifold is said to befinitesimally holomorphidf there exists a parallel
complex structurd on F*(T M%) such that

FoolJy =JoFy,

whereJy, is the complex structure ab2.

Micallef and Wolfson characterized the infinitesimally holomorphic immersion in terms
of the second fundamental form.

L emma 1.3 (Micallef-Wolfson[5]). An immersionF : M2 — M* of an oriented surface
into an oriented Riemannian four-manifold is infinitesimally holomorphic if and only if
3 4 3 4 3 4
hiy = hip = —h3, h3a = hip = —hyy )
or

3 4 3 4 3 4
hop = hip = —hiy, hiy = hip = —hy,. 2)
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ThereforeProposition 1.dmplies that if M2 satisfies the conditiog), thenM? is an
infinitesimally holomorphic curve. The converse is also true under an appropriate choice of
orientation ofM?2.

Moreover, usingrheorem 1.1we shall prove the following theorem.

Theorem 1.4. LetQ*be ahyperkahler four-manifold. L&f2 be an oriented closed surface
immersed inQ*. Let M2 carry the induced Riemannian metric. M2 is infinitesimally
holomorphic inQ*, then M2 is a holomorphic curve with respect to one of the complex
structures onQ* compatible with the metric

A holomorphic curve is of course infinitesimally holomorphic. LBt be a four-
dimensional torus with its standard flat metric. It is known that an infinitesimally holo-
morphic curve in’'4 is holomorphic (cf[5, Section 3). Theorem 1.4s a generalization of
this result to the case of closed surfaces in hyperkahler four-manifolds.

2. Proof of Proposition 1.2

We shall employ the notation of our previous pafgjr Let 0* be a four-dimensional
Riemannian spin manifold with a nonzero parallel spinor filéVithout loss of generality,
we may assume that is a positive spinor field and its norm is identically equal to 1. Let
M? be a two-dimensional Riemannian spin manifold isometrically immersgzf'in

>0, XM and ¥ N denote the complex spinor bundles associated to spin structures of
the tangent bundl&Q of Q*, the tangent bundI&@M of M2 and the normal bundi&’ of
MZin Q% respectively.

Let {X1, X2} and{Y1, Y2} be oriented local orthonormal frames™f and N, respec-
tively. Then the components of the second fundamental form Il are defined by

hi = (11X, X)), Yi—2),

wherei, j = 1, 2 andk = 3, 4. Remark thah{j = hJ"I

The restrictiony |, of ¥ to the surfacé/? belongs to the sections af Q|y (= *M ®
X N) and{(y|y, ¥|m) = 1. Then we have the following equation

1 2
Vi W) = VMO Wl = 5 3 vo X IHX. X)Wl €)
i=1

whereyy means the Clifford multiplication o Q| (se€[1, Section 2Jor[3, Section 2].
By (3), the condition(x) is equivalent to the following equations:

Yo(X1- (X1, X))V ly + vo(X2- (X1, X2)¥|u =0, 4)
vYo (X1 - (X2, X))V |m + yo (X2 - (X2, X2))¥ Iy = 0. 5)

Here we show the following identities.
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Lemma 2.1. For any positive parallel spinor fielgr on 0* such thaty| = 1, we have

lyo(X1- (X1, Xa)¥|m + vo(X2- (X1, X2 )V lml?
= (h3; — h1p)? + (i + 1), (6)

lyo(X1-N(X2, Xa)¥|m + vo(X2-11(X2, X))V ml?
= (h3; — h3p)® + (W31 + 13y, (7)

where| - | denotes the point-wise norm defined by the Hermitian métricon the complex
vector bundleX Q| on M2,

Proof. We first prove(6).

lyo (X1 - (X1, X)W |m + yo (X2 - (X1, X2) ¥ |ml?
= (X1, XD s ¥l + 11 (X1, X2 P s ¥ L)
+ 2Re(yo (X1 - (X1, X))V |m, vo (X2 - (X1, X2))¥ M)
= |I1(X1, XD)I* + [I1(X1, X2)[?
+ 2Relyo (X1 - (h31Y1+ W11 Yo) ¥ lu, vo (X2 - (BoY1 + hipY2)) ¥ m)
= [I1(X1, X)|2 + 1(X1, X2)|2 + 283, h3,Reyo (X1 - YD)V m, vo (X2 - YU m)
+ 2131 h 1 Relyo (X1 - YDV m, vo (X2 - Y2) ¥ m)
+ 2h$h3Re(yo (X1 Y)Wl vo(X2 - YD W )
+ 211 h 1 Reyo (X1 - Y2)¥ Im, vo (X2 - Y2) ¥ m)
= |h3,Y1 + h$ V2?4 |h3,01 + 3,212 4 203 h3,Re(yo (X)W m, yo (X2)¥ 1 m)
+ 2h3 h o Re(yo (X1 - X2 - Y1 - Y)Y, ¥m)
+ 2hh3Re(yo(—X1- X2 Y1 - Y)W m. ¥lm)
+ 2h1h T Re(yo (XDV . vo (X2)¥ |m)
= (B3)% + (W1)? + (h39)% + (1) — 213111, + 2h1hT,
= (h3; — h1)” + (W1 + h3p)>.
Here we used the facts that 8g (X;)¥ |y, yo(X )V |y) = 0 fori # j and thatwc :=

—X1- X2 - Y1 - Ys is the chirality operator oiX' Q) for eachp e M?2. Eq. (7)is also
proved by the same calculation. O

If M2 satisfies the conditioti), thenLemma 2.1lyields that
3 4 4 3 3 4 4 3
hi1 —h1, =0, hi;+hi, =0, h31 —h3, =0, h31+ h3, = 0.

Hence we have the conditidf).

Conversely, if the second fundamental formMf satisfies(1), then we havégs. (4)
and (5)by Lemma 2.1 Therefore, we obtain the conditi@r).

Thus we complete the proof &roposition 1.2
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3. Proof of Theorem 1.4

Let 0% be a hyperkahler four-manifold. Indee@? is a spin manifold and has a nonzero
positive parallel spinor fields (see[2, Chapter 6). Let M? be an oriented closed sur-
face immersed inp*. Let M? carry the induced Riemannian metric. Since the second
Stiefel-Whitney class aff? is zero, there exists a spin structureMA. We fix a spin struc-
ture onM2. Then the normal bundl® carries the induced spin structure (§éep. 85).
Suppose that/? is infinitesimally holomorphic inp*. By Lemma 1.3the components of
the second fundamental form 1l 812 in Q* satisfy the conditiorf1) or (2).

Case 1: llsatisfies (1).

By Proposition 1.2M2 satisfies the conditiotx). By Theorem 1.1M? is a holomorphic
curve with respect to one of the complex structuregdrcompatible with the metric.

Case 2: llsatisfies (2).

M? denote the surfackf? with the opposite orientation. When the second fundamental
form of M? satisfies(2), that of M? satisfies(1). By Proposition 1.2 M? satisfies the
condition (). By Theorem 1.1 M? is a holomorphic curve with respect to one of the
complex structures o@* compatible with the metric. We denote its complex structure
by J. M?2 is anti-holomorphic with respect tb. In other wordsM? is holomorphic with
respect to-J.

Thus we finish the proof ofheorem 1.4
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