
Journal of Geometry and Physics 46 (2003) 1–5

Infinitesimally holomorphic curves in
hyperkähler four-manifolds

Hiroshi Iriyeh
Department of Mathematics, Graduate School of Science, Tokyo Metropolitan University,

Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan

Received 11 September 2001; received in revised form 20 November 2001

Dedicated to Professor Koichi Ogiue on his sixtieth birthday

Abstract

We prove that closed infinitesimally holomorphic curves in a hyperkähler four-manifold are
actually holomorphic with respect to one of the parallel complex structures on the ambient space
compatible with the metric.
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1. Statements of the results

In our previous paper[3], we posed the following problem.

Problem. LetQ2n+m be a(2n+m)-dimensional Riemannian spin manifold with a nonzero
parallel spinor field. LetM2n be a 2n-dimensional closed Riemannian spin manifold iso-
metrically immersed inQ2n+m. Then classify all submanifoldsM2n satisfying the condition
that there exists a nonzero parallel spinor fieldψ ∈ Γ (ΣQ) such that

∇ΣM⊗ΣN(ψ |M) = 0. (∗)

Hereψ |M denotes the restriction ofψ to the submanifoldM2n.
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A four-dimensional Riemannian spin manifoldQ4 with a nonzero parallel spinor field is
nothing but a hyperkähler four-manifold. IfQ4 is simply connected, then a Ricci-flat Kähler
structure onQ4 coincides with a hyperkähler structure. K3 surfaces equipped with Ricci-flat
Kähler metrics and four-dimensional hyperkähler ALE spaces are typical examples of such
Q4.

For the above problem, in the paper[3], we gave the following answer in the case where
n = 1 andm = 2.

Theorem 1.1 ([3, Theorem 4.5]). LetQ4 be a hyperkähler four-manifold. LetM2 be a
two-dimensional closed Riemannian spin manifold isometrically immersed inQ4. Then the
following conditions are equivalent:

(i) M2 is a holomorphic curve with respect to one of the complex structures onQ4 com-
patible with the metric.

(ii) M2 satisfies the condition(∗).

On the other hand, we can consider the condition(∗)as a purely local condition without the
assumption thatM2n isclosed(i.e. compact and without boundary). In this paper, we charac-
terize the condition(∗) by the second fundamental form in the case wheren = 1 andm = 2.

Proposition 1.2. LetQ4 be a four-dimensional Riemannian spin manifold with a nonzero
parallel spinor field. LetM2 be a two-dimensional Riemannian spin manifold isometrically
immersed inQ4. ThenM2 satisfies the condition(∗) if and only if the components of the
second fundamental form ofM2 in Q4 satisfy that

h3
11 = h4

12 = −h3
22, h4

22 = h3
12 = −h4

11.

The above equations are closely related to the notion of infinitesimally holomorphic
immersions. We recall its definition (cf.[5, Section 3]).

Definition. An immersionF : M2 → M̃4 of an oriented surface into an oriented Rie-
mannian four-manifold is said to beinfinitesimally holomorphicif there exists a parallel
complex structureJ onF ∗(T M̃4) such that

F∗ ◦ JM = J ◦ F∗,

whereJM is the complex structure onM2.

Micallef and Wolfson characterized the infinitesimally holomorphic immersion in terms
of the second fundamental form.

Lemma 1.3 (Micallef–Wolfson[5]). An immersionF : M2 → M̃4 of an oriented surface
into an oriented Riemannian four-manifold is infinitesimally holomorphic if and only if

h3
11 = h4

12 = −h3
22, h4

22 = h3
12 = −h4

11 (1)

or

h3
22 = h4

12 = −h3
11, h4

11 = h3
12 = −h4

22. (2)
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ThereforeProposition 1.2implies that ifM2 satisfies the condition(∗), thenM2 is an
infinitesimally holomorphic curve. The converse is also true under an appropriate choice of
orientation ofM2.

Moreover, usingTheorem 1.1, we shall prove the following theorem.

Theorem 1.4. LetQ4 be a hyperkähler four-manifold. LetM2 be an oriented closed surface
immersed inQ4. LetM2 carry the induced Riemannian metric. IfM2 is infinitesimally
holomorphic inQ4, thenM2 is a holomorphic curve with respect to one of the complex
structures onQ4 compatible with the metric.

A holomorphic curve is of course infinitesimally holomorphic. LetT 4 be a four-
dimensional torus with its standard flat metric. It is known that an infinitesimally holo-
morphic curve inT 4 is holomorphic (cf.[5, Section 3]). Theorem 1.4is a generalization of
this result to the case of closed surfaces in hyperkähler four-manifolds.

2. Proof of Proposition 1.2

We shall employ the notation of our previous paper[3]. LetQ4 be a four-dimensional
Riemannian spin manifold with a nonzero parallel spinor fieldψ . Without loss of generality,
we may assume thatψ is a positive spinor field and its norm is identically equal to 1. Let
M2 be a two-dimensional Riemannian spin manifold isometrically immersed inQ4.
ΣQ, ΣM andΣN denote the complex spinor bundles associated to spin structures of

the tangent bundleTQ of Q4, the tangent bundleTM of M2 and the normal bundleN of
M2 in Q4, respectively.

Let {X1, X2} and{Y1, Y2} be oriented local orthonormal frames ofTM andN , respec-
tively. Then the components of the second fundamental form II are defined by

hkij := 〈II(Xi,Xj ), Yk−2〉,

wherei, j = 1,2 andk = 3,4. Remark thathkij = hkji .

The restrictionψ |M of ψ to the surfaceM2 belongs to the sections ofΣQ|M(= ΣM ⊗
ΣN) and〈ψ |M,ψ |M 〉 ≡ 1. Then we have the following equation

∇ΣQ
X (ψ |M)− ∇ΣM⊗ΣN

X (ψ |M) = 1

2

2∑

i=1

γQ(Xi · II(X,Xi))ψ |M, (3)

whereγQ means the Clifford multiplication onΣQ|M (see[1, Section 2]or [3, Section 2]).
By (3), the condition(∗) is equivalent to the following equations:

γQ(X1 · II(X1, X1))ψ |M + γQ(X2 · II(X1, X2))ψ |M = 0, (4)

γQ(X1 · II(X2, X1))ψ |M + γQ(X2 · II(X2, X2))ψ |M = 0. (5)

Here we show the following identities.
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Lemma 2.1. For any positive parallel spinor fieldψ onQ4 such that|ψ | ≡ 1, we have

|γQ(X1 · II(X1, X1))ψ |M + γQ(X2 · II(X1, X2))ψ |M |2
= (h3

11 − h4
12)

2 + (h4
11 + h3

12)
2, (6)

|γQ(X1 · II(X2, X1))ψ |M + γQ(X2 · II(X2, X2))ψ |M |2
= (h3

21 − h4
22)

2 + (h4
21 + h3

22)
2, (7)

where| · | denotes the point-wise norm defined by the Hermitian metric〈·, ·〉 on the complex
vector bundleΣQ|M onM2.

Proof. We first prove(6).

|γQ(X1 · II(X1, X1))ψ |M + γQ(X2 · II(X1, X2))ψ |M |2
= |II(X1, X1)|2〈ψ |M,ψ |M 〉 + |II(X1, X2)|2〈ψ |M,ψ |M 〉

+ 2Re〈γQ(X1 · II(X1, X1))ψ |M, γQ(X2 · II(X1, X2))ψ |M 〉
= |II(X1, X1)|2 + |II(X1, X2)|2

+ 2Re〈γQ(X1 · (h3
11Y1 + h4

11Y2))ψ |M, γQ(X2 · (h3
12Y1 + h4

12Y2))ψ |M 〉
= |II(X1, X1)|2 + |II(X1, X2)|2 + 2h3

11h
3
12Re〈γQ(X1 · Y1)ψ |M, γQ(X2 · Y1)ψ |M 〉

+ 2h3
11h

4
12Re〈γQ(X1 · Y1)ψ |M, γQ(X2 · Y2)ψ |M 〉

+ 2h4
11h

3
12Re〈γQ(X1 · Y2)ψ |M, γQ(X2 · Y1)ψ |M 〉

+ 2h4
11h

4
12Re〈γQ(X1 · Y2)ψ |M, γQ(X2 · Y2)ψ |M 〉

= |h3
11Y1 + h4

11Y2|2 + |h3
12Y1 + h4

12Y2|2 + 2h3
11h

3
12Re〈γQ(X1)ψ |M, γQ(X2)ψ |M 〉

+ 2h3
11h

4
12Re〈γQ(X1 ·X2 · Y1 · Y2)ψ |M,ψ |M 〉

+ 2h4
11h

3
12Re〈γQ(−X1 ·X2 · Y1 · Y2)ψ |M,ψ |M 〉

+ 2h4
11h

4
12Re〈γQ(X1)ψ |M, γQ(X2)ψ |M 〉

= (h3
11)

2 + (h4
11)

2 + (h3
12)

2 + (h4
12)

2 − 2h3
11h

4
12 + 2h4

11h
3
12

= (h3
11 − h4

12)
2 + (h4

11 + h3
12)

2.

Here we used the facts that Re〈γQ(Xi)ψ |M, γQ(Xj )ψ |M 〉 = 0 for i �= j and thatωC :=
−X1 · X2 · Y1 · Y2 is the chirality operator on(ΣQ)p for eachp ∈ M2. Eq. (7) is also
proved by the same calculation. �

If M2 satisfies the condition(∗), thenLemma 2.1yields that

h3
11 − h4

12 = 0, h4
11 + h3

12 = 0, h3
21 − h4

22 = 0, h4
21 + h3

22 = 0.

Hence we have the condition(1).
Conversely, if the second fundamental form ofM2 satisfies(1), then we haveEqs. (4)

and (5)by Lemma 2.1. Therefore, we obtain the condition(∗).
Thus we complete the proof ofProposition 1.2.
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3. Proof of Theorem 1.4

LetQ4 be a hyperkähler four-manifold. Indeed,Q4 is a spin manifold and has a nonzero
positive parallel spinor fieldψ (see[2, Chapter 6]). Let M2 be an oriented closed sur-
face immersed inQ4. Let M2 carry the induced Riemannian metric. Since the second
Stiefel–Whitney class ofM2 is zero, there exists a spin structure onM2. We fix a spin struc-
ture onM2. Then the normal bundleN carries the induced spin structure (see[4, p. 85]).
Suppose thatM2 is infinitesimally holomorphic inQ4. By Lemma 1.3, the components of
the second fundamental form II ofM2 in Q4 satisfy the condition(1) or (2).

Case 1: IIsatisfies (1).
By Proposition 1.2,M2 satisfies the condition(∗). By Theorem 1.1,M2 is a holomorphic

curve with respect to one of the complex structures onQ4 compatible with the metric.
Case 2: IIsatisfies (2).
M̄2 denote the surfaceM2 with the opposite orientation. When the second fundamental

form of M2 satisfies(2), that of M̄2 satisfies(1). By Proposition 1.2, M̄2 satisfies the
condition (∗). By Theorem 1.1, M̄2 is a holomorphic curve with respect to one of the
complex structures onQ4 compatible with the metric. We denote its complex structure
by J . M2 is anti-holomorphic with respect toJ . In other words,M2 is holomorphic with
respect to−J .

Thus we finish the proof ofTheorem 1.4.
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