

Journal of Geometry and Physics 46 (2003) 1-5

www.elsevier.com/locate/jgp

Infinitesimally holomorphic curves in hyperkähler four-manifolds

Hiroshi Iriyeh

Department of Mathematics, Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan

Received 11 September 2001; received in revised form 20 November 2001

Dedicated to Professor Koichi Ogiue on his sixtieth birthday

Abstract

We prove that closed infinitesimally holomorphic curves in a hyperkähler four-manifold are actually holomorphic with respect to one of the parallel complex structures on the ambient space compatible with the metric.

© 2002 Elsevier Science B.V. All rights reserved.

MSC: 53B25; 53C26; 53C27

Subj. Class .: Differential geometry

Keywords: Infinitesimally holomorphic curves; Parallel spinor fields; Hyperkähler four-manifolds

1. Statements of the results

In our previous paper [3], we posed the following problem.

Problem. Let Q^{2n+m} be a (2n+m)-dimensional Riemannian spin manifold with a nonzero parallel spinor field. Let M^{2n} be a 2n-dimensional closed Riemannian spin manifold isometrically immersed in Q^{2n+m} . Then classify all submanifolds M^{2n} satisfying the condition that there exists a nonzero parallel spinor field $\psi \in \Gamma(\Sigma Q)$ such that

$$\nabla^{\Sigma M \otimes \Sigma N}(\psi|_M) = 0. \tag{(*)}$$

Here $\psi|_M$ denotes the restriction of ψ to the submanifold M^{2n} .

E-mail address: hirie@comp.metro-u.ac.jp (H. Iriyeh).

A four-dimensional Riemannian spin manifold Q^4 with a nonzero parallel spinor field is nothing but a hyperkähler four-manifold. If Q^4 is simply connected, then a Ricci-flat Kähler structure on Q^4 coincides with a hyperkähler structure. K3 surfaces equipped with Ricci-flat Kähler metrics and four-dimensional hyperkähler ALE spaces are typical examples of such Q^4 .

For the above problem, in the paper [3], we gave the following answer in the case where n = 1 and m = 2.

Theorem 1.1 ([3, Theorem 4.5]). Let Q^4 be a hyperkähler four-manifold. Let M^2 be a two-dimensional closed Riemannian spin manifold isometrically immersed in Q^4 . Then the following conditions are equivalent:

- (i) M^2 is a holomorphic curve with respect to one of the complex structures on Q^4 compatible with the metric.
- (ii) M^2 satisfies the condition (*).

On the other hand, we can consider the condition (*) as a purely local condition without the assumption that M^{2n} is *closed* (i.e. compact and without boundary). In this paper, we characterize the condition (*) by the second fundamental form in the case where n = 1 and m = 2.

Proposition 1.2. Let Q^4 be a four-dimensional Riemannian spin manifold with a nonzero parallel spinor field. Let M^2 be a two-dimensional Riemannian spin manifold isometrically immersed in Q^4 . Then M^2 satisfies the condition (*) if and only if the components of the second fundamental form of M^2 in Q^4 satisfy that

$$h_{11}^3 = h_{12}^4 = -h_{22}^3, \qquad h_{22}^4 = h_{12}^3 = -h_{11}^4.$$

The above equations are closely related to the notion of infinitesimally holomorphic immersions. We recall its definition (cf. [5, Section 3]).

Definition. An immersion $F: M^2 \to \tilde{M}^4$ of an oriented surface into an oriented Riemannian four-manifold is said to be *infinitesimally holomorphic* if there exists a parallel complex structure J on $F^*(T\tilde{M}^4)$ such that

$$F_* \circ J_M = J \circ F_*,$$

where J_M is the complex structure on M^2 .

Micallef and Wolfson characterized the infinitesimally holomorphic immersion in terms of the second fundamental form.

Lemma 1.3 (Micallef–Wolfson [5]). An immersion $F: M^2 \to \tilde{M}^4$ of an oriented surface into an oriented Riemannian four-manifold is infinitesimally holomorphic if and only if

$$h_{11}^3 = h_{12}^4 = -h_{22}^3, \qquad h_{22}^4 = h_{12}^3 = -h_{11}^4$$
 (1)

or

$$h_{22}^3 = h_{12}^4 = -h_{11}^3, \qquad h_{11}^4 = h_{12}^3 = -h_{22}^4.$$
 (2)

Therefore Proposition 1.2 implies that if M^2 satisfies the condition (*), then M^2 is an infinitesimally holomorphic curve. The converse is also true under an appropriate choice of orientation of M^2 .

Moreover, using Theorem 1.1, we shall prove the following theorem.

Theorem 1.4. Let Q^4 be a hyperkähler four-manifold. Let M^2 be an oriented closed surface immersed in Q^4 . Let M^2 carry the induced Riemannian metric. If M^2 is infinitesimally holomorphic in Q^4 , then M^2 is a holomorphic curve with respect to one of the complex structures on Q^4 compatible with the metric.

A holomorphic curve is of course infinitesimally holomorphic. Let T^4 be a fourdimensional torus with its standard flat metric. It is known that an infinitesimally holomorphic curve in T^4 is holomorphic (cf. [5, Section 3]). Theorem 1.4 is a generalization of this result to the case of closed surfaces in hyperkähler four-manifolds.

2. Proof of Proposition 1.2

We shall employ the notation of our previous paper [3]. Let Q^4 be a four-dimensional Riemannian spin manifold with a nonzero parallel spinor field ψ . Without loss of generality, we may assume that ψ is a positive spinor field and its norm is identically equal to 1. Let M^2 be a two-dimensional Riemannian spin manifold isometrically immersed in Q^4 .

 ΣQ , ΣM and ΣN denote the complex spinor bundles associated to spin structures of the tangent bundle TQ of Q^4 , the tangent bundle TM of M^2 and the normal bundle N of M^2 in Q^4 , respectively.

Let $\{X_1, X_2\}$ and $\{Y_1, Y_2\}$ be oriented local orthonormal frames of *TM* and *N*, respectively. Then the components of the second fundamental form II are defined by

$$h_{ij}^k := \langle II(X_i, X_j), Y_{k-2} \rangle,$$

where i, j = 1, 2 and k = 3, 4. Remark that $h_{ij}^k = h_{ji}^k$.

The restriction $\psi|_M$ of ψ to the surface M^2 belongs to the sections of $\Sigma Q|_M (= \Sigma M \otimes \Sigma N)$ and $\langle \psi|_M, \psi|_M \rangle \equiv 1$. Then we have the following equation

$$\nabla_X^{\Sigma Q}(\psi|_M) - \nabla_X^{\Sigma M \otimes \Sigma N}(\psi|_M) = \frac{1}{2} \sum_{i=1}^2 \gamma_Q(X_i \cdot II(X, X_i))\psi|_M,$$
(3)

where γ_Q means the Clifford multiplication on $\Sigma Q|_M$ (see [1, Section 2] or [3, Section 2]). By (3), the condition (*) is equivalent to the following equations:

$$\gamma_Q(X_1 \cdot II(X_1, X_1))\psi|_M + \gamma_Q(X_2 \cdot II(X_1, X_2))\psi|_M = 0,$$
(4)

$$\gamma_Q(X_1 \cdot II(X_2, X_1))\psi|_M + \gamma_Q(X_2 \cdot II(X_2, X_2))\psi|_M = 0.$$
(5)

Here we show the following identities.

Lemma 2.1. For any positive parallel spinor field ψ on Q^4 such that $|\psi| \equiv 1$, we have

$$\begin{aligned} |\gamma_Q(X_1 \cdot II(X_1, X_1))\psi|_M + \gamma_Q(X_2 \cdot II(X_1, X_2))\psi|_M|^2 \\ &= (h_{11}^3 - h_{12}^4)^2 + (h_{11}^4 + h_{12}^3)^2, \end{aligned}$$
(6)

$$\begin{aligned} |\gamma_Q(X_1 \cdot II(X_2, X_1))\psi|_M + \gamma_Q(X_2 \cdot II(X_2, X_2))\psi|_M|^2 \\ &= (h_{21}^3 - h_{22}^4)^2 + (h_{21}^4 + h_{22}^3)^2, \end{aligned}$$
(7)

where $|\cdot|$ denotes the point-wise norm defined by the Hermitian metric $\langle \cdot, \cdot \rangle$ on the complex vector bundle $\Sigma Q|_M$ on M^2 .

Proof. We first prove (6).

$$\begin{split} |\gamma_{Q}(X_{1} \cdot II(X_{1}, X_{1}))\psi|_{M} + \gamma_{Q}(X_{2} \cdot II(X_{1}, X_{2}))\psi|_{M}|^{2} \\ &= |II(X_{1}, X_{1})|^{2} \langle \psi|_{M}, \psi|_{M} \rangle + |II(X_{1}, X_{2})|^{2} \langle \psi|_{M}, \psi|_{M} \rangle \\ &+ 2\text{Re} \langle \gamma_{Q}(X_{1} \cdot II(X_{1}, X_{1}))\psi|_{M}, \gamma_{Q}(X_{2} \cdot II(X_{1}, X_{2}))\psi|_{M} \rangle \\ &= |II(X_{1}, X_{1})|^{2} + |II(X_{1}, X_{2})|^{2} \\ &+ 2\text{Re} \langle \gamma_{Q}(X_{1} \cdot (h_{11}^{3}Y_{1} + h_{11}^{4}Y_{2}))\psi|_{M}, \gamma_{Q}(X_{2} \cdot (h_{12}^{3}Y_{1} + h_{12}^{4}Y_{2}))\psi|_{M} \rangle \\ &= |II(X_{1}, X_{1})|^{2} + |II(X_{1}, X_{2})|^{2} + 2h_{11}^{3}h_{12}^{3}\text{Re} \langle \gamma_{Q}(X_{1} \cdot Y_{1})\psi|_{M}, \gamma_{Q}(X_{2} \cdot Y_{1})\psi|_{M} \rangle \\ &+ 2h_{11}^{3}h_{12}^{4}\text{Re} \langle \gamma_{Q}(X_{1} \cdot Y_{1})\psi|_{M}, \gamma_{Q}(X_{2} \cdot Y_{2})\psi|_{M} \rangle \\ &+ 2h_{11}^{4}h_{12}^{3}\text{Re} \langle \gamma_{Q}(X_{1} \cdot Y_{2})\psi|_{M}, \gamma_{Q}(X_{2} \cdot Y_{1})\psi|_{M} \rangle \\ &+ 2h_{11}^{4}h_{12}^{4}\text{Re} \langle \gamma_{Q}(X_{1} \cdot Y_{2})\psi|_{M}, \gamma_{Q}(X_{2} \cdot Y_{2})\psi|_{M} \rangle \\ &+ 2h_{11}^{3}h_{12}^{4}\text{Re} \langle \gamma_{Q}(X_{1} \cdot X_{2} \cdot Y_{1} \cdot Y_{2})\psi|_{M}, \psi|_{M} \rangle \\ &+ 2h_{11}^{3}h_{12}^{4}\text{Re} \langle \gamma_{Q}(X_{1} \cdot X_{2} \cdot Y_{1} \cdot Y_{2})\psi|_{M}, \psi|_{M} \rangle \\ &+ 2h_{11}^{3}h_{12}^{4}\text{Re} \langle \gamma_{Q}(X_{1} \cdot X_{2} \cdot Y_{1} \cdot Y_{2})\psi|_{M}, \psi|_{M} \rangle \\ &+ 2h_{11}^{4}h_{12}^{3}\text{Re} \langle \gamma_{Q}(X_{1})\psi|_{M}, \gamma_{Q}(X_{2})\psi|_{M} \rangle \\ &= (h_{11}^{3})^{2} + (h_{11}^{4})^{2} + (h_{12}^{3})^{2} + (h_{12}^{4})^{2} - 2h_{11}^{3}h_{12}^{4} + 2h_{11}^{4}h_{12}^{3} \\ &= (h_{11}^{3} - h_{12}^{4})^{2} + (h_{11}^{4} + h_{12}^{3})^{2}. \end{split}$$

Here we used the facts that $\operatorname{Re}\langle \gamma_Q(X_i)\psi|_M, \gamma_Q(X_j)\psi|_M \rangle = 0$ for $i \neq j$ and that $\omega_{\mathbb{C}} := -X_1 \cdot X_2 \cdot Y_1 \cdot Y_2$ is the chirality operator on $(\Sigma Q)_p$ for each $p \in M^2$. Eq. (7) is also proved by the same calculation.

If M^2 satisfies the condition (*), then Lemma 2.1 yields that

$$h_{11}^3 - h_{12}^4 = 0,$$
 $h_{11}^4 + h_{12}^3 = 0,$ $h_{21}^3 - h_{22}^4 = 0,$ $h_{21}^4 + h_{22}^3 = 0.$

Hence we have the condition (1).

Conversely, if the second fundamental form of M^2 satisfies (1), then we have Eqs. (4) and (5) by Lemma 2.1. Therefore, we obtain the condition (*).

Thus we complete the proof of Proposition 1.2.

3. Proof of Theorem 1.4

Let Q^4 be a hyperkähler four-manifold. Indeed, Q^4 is a spin manifold and has a nonzero positive parallel spinor field ψ (see [2, Chapter 6]). Let M^2 be an oriented closed surface immersed in Q^4 . Let M^2 carry the induced Riemannian metric. Since the second Stiefel–Whitney class of M^2 is zero, there exists a spin structure on M^2 . We fix a spin structure on M^2 . Then the normal bundle N carries the induced spin structure (see [4, p. 85]). Suppose that M^2 is infinitesimally holomorphic in Q^4 . By Lemma 1.3, the components of the second fundamental form II of M^2 in Q^4 satisfy the condition (1) or (2).

Case 1: II satisfies (1).

By Proposition 1.2, M^2 satisfies the condition (*). By Theorem 1.1, M^2 is a holomorphic curve with respect to one of the complex structures on Q^4 compatible with the metric.

Case 2: II satisfies (2).

 \overline{M}^2 denote the surface M^2 with the opposite orientation. When the second fundamental form of M^2 satisfies (2), that of \overline{M}^2 satisfies (1). By Proposition 1.2, \overline{M}^2 satisfies the condition (*). By Theorem 1.1, \overline{M}^2 is a holomorphic curve with respect to one of the complex structures on Q^4 compatible with the metric. We denote its complex structure by J. M^2 is anti-holomorphic with respect to J. In other words, M^2 is holomorphic with respect to -J.

Thus we finish the proof of Theorem 1.4.

Acknowledgements

The author would like to thank the referee for useful remarks and suggestions.

References

- [1] C. Bär, Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Global Anal. Geom. 16 (1998) 573-596.
- [2] H. Baum, Th. Friedrich, R. Grunewald, I. Kath, Twistors and Killing Spinors on Riemannian Manifolds, Teubner, Leipzig, 1991.
- [3] H. Iriyeh, Minimal submanifolds in Riemannian spin manifolds with parallel spinor fields, J. Geom. Phys. 41 (2002) 258–273.
- [4] H.B. Lawson, M.L. Michelson, Spin Geometry, Princeton University Press, Princeton, NJ, 1989.
- [5] M.J. Micallef, J.G. Wolfson, The second variation of area of minimal surfaces in four-manifolds, Math. Ann. 295 (1993) 245–267.